Journal of Organometallic Chemistry, 135 (1977) 221–228 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG UND CHARAKTERISIERUNG VON PENTAHALOGENOMONOCARBONYLOSMATEN(III)

F.H. JOHANNSEN und W. PREETZ*

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40–60, 23 Kiel 1 (B.R.D.)

(Eingegangen den 7. Februar 1977)

Summary

By decarbonylation of trans- $[OsBr_4(CO)_2]^-$ and exchange of the pure halogen monocarbonyls $[OsX_5(CO)]^{2^-}$ (X = Cl, Br, I) can be prepared and isolated as stable salts with various cations. The complexes are characterized by UV-VIS and vibrational spectra and the observed bands are assigned. The stability and behaviour in solution are comparable with similar hexahalo- or pentahalo-nitrosyl compounds.

Zusammenfassung

Durch Decarbonylierung von *trans*- $[OsBr_4(CO)_2]^-$ und Halogenidaustausch erhält man die reinen Monocarbonyle $[OsX_5(CO)]^{2-}$ (X = Cl, Br, J), die sich als stabile Salze mit verschiedenen Kationen isolieren lassen. Die Komplexe werden durch UVS- und Schwingungsspektren charakterisiert und die beobachteten Banden zugeordnet. Die Stabilität und das Verhalten in Lösung sind mit entsprechenden Hexahalogeno- oder Pentahalogenonitrosylverbindungen vergleichbar.

Einleitung

Die oktaedrischen Pentahalogenomonocarbonylosmate(III) vervollständigen das System der von uns untersuchten Halogenocarbonylosmate [1-3]. Komplexe des Typs $[MX_5(CO)]^{2-}$ sind vom Ruthenium (X = Cl, Br) [4-9], Osmium (X = Cl, Br) [5], Rhodium (X = Cl, Br, J) [4,5,10-15] und Iridium (X = Cl, Br, J) [4,5,16-18] bekannt. Sie werden durch Umsetzung von Halogenverbindungen der Platinmetalle mit Ameisensäure [4-7], mit CO in Dimethylacetamid [8] oder in HCl [9], durch Oxidation und CO-Abspaltung aus Dicarbonylkomplexen [10,11,13-15,18] oder durch Hochdruckcarbonylierung [16,17] hergestellt. Alle Verbindungen sind farbig und bilden schwerlösliche Cäsium- oder Tetraalkylammoniumsalze.

Nur in wenigen Fällen sind die UVS-Spektren (ultraviolett und sichtbar) angegeben [8,9]. Eine Zuordnung der IR- und Ramanbanden findet sich in [19] und eine teilweise Beschreibung der Normalschwingungen in [20,21]. Die von uns untersuchten Monocarbonylkomplexe weisen Ähnlichkeiten mit den entsprechenden Mononitrosylkomplexen $[OsX_5(NO)]^{2-}$ auf [22,23].

Ergebnisse und Diskussion

Darstellung und Eigenschaften

Bei der kritischen Prüfung der bisher bekannten Methoden zur Darstellung der Monocarbonyle hat sich nur das in [5] beschriebene Verfahren der Umsetzung der Hexahalogenokomplexe mit Ameisensäure in Halogenwasserstoffsäuren als brauchbar erwiesen. Allerdings sind die Produkte häufig durch wechselnde Mengen von *cis*-Dicarbonylen verunreinigt. Diese Schwierigkeit tritt bei der neuentwickelten Methode nicht auf. Sie beruht auf der leichten Substituierbarkeit einer CO-Gruppe in *trans*-Dicarbonylen [1] und dem anschliessenden Halogenidaustausch:

$$[OsBr_6]^{2-} \xrightarrow{CO}_{Aceton} trans-[OsBr_4(CO)_2]^{-} \xrightarrow{HBr} [OsBr_5(CO)]^{2-} \xrightarrow[HJ]{} [OsJ_5(CO)]^{2-}$$

 $[OsJ_5(CO)]^{2^-}$ wird hier erstmals beschrieben. Es entsteht in geringen Mengen auch durch Abspaltung von CO aus *trans*- $[OsJ_4(CO)_2]^-$ [24] und bei der Darstellung von *cis*- $[OsJ_4(CO)_2]^{2^-}$ mit Allylalkohol [2].

In Analogie zu den Rhodium- und Rutheniumkomplexen zeigen die Monound die *cis*-Dicarbonyle von Osmium eine starke Neigung zur Aufnahme von Solvatmolekülen L in *trans*-Position zum CO. Die solvatisierten Verbindungen lassen sich nur schwer in Substanz isolieren, man kann sie jedoch für L = H_2O in Lösung rein erhalten. Häufig stehen sie im Gleichgewicht mit dimeren halogenverbrückten Komplexen, die zusammen mit den Monomeren als Verunreinigungen ausfallen können. Ihr Anteil lässt sich durch einen Überschuss an freien Halogenidionen zurückdrängen. Aus alkoholischen Lösungen lassen sich durch einen Überschuss von Tetraäthylammoniumionen (TÄA⁺) die Monocarbonyle als die in dem System schwerstlöslichen Salze in reiner Form ausfällen:

$$(T\ddot{A}A)_{2}[OsX_{5}(CO)]\downarrow \xleftarrow{T\ddot{A}A^{+}} [OsX_{5}(CO)]^{2-} \rightleftharpoons [OsX_{4}(CO)L]^{-} \rightleftharpoons [OsX_{4}(CO)]_{2}^{2-}$$

Aus wässrigen halogenwasserstoffsauren Lösungen erhält man die entsprechenden Rb- bzw. Cs-Salze.

Die kinetische Stabilität nimmt in Lösung vom Jodo- zum Chlorokomplex zu. Thermisch sind die Verbindungen im festen Zustand in Form ihrer Cäsiumsalze am beständigsten. Die Bindung des CO ist so fest, dass sich die Komplexe durch Umsetzung mit den Halogenwasserstoffsäuren ineinander überführen lassen. Die halogengemischten Zwischenprodukte können isoliert werden [24]. Während sich der Jodokomplex durch oxidativen Austausch mit Br₂ zu dem Bromokom-

222

plex umsetzen lässt, ist die entsprechende Reaktion mit Cl_2 nicht möglich, weil dabei die CO-Gruppe abgespalten wird.

UVS-Spektren

Die mit einem selbstregistrierenden Spektralphotometer Acta M VII der Fa. Beckman in KBr-Presslingen bei 10 K [25] aufgenommenen UVS-Spektren zeigt Fig. 1. Die Zuordnung der Absorptionsbanden erfolgt unter der vereinfachenden Annahme einer Pseudo- O_h - bzw. D_{4h} -Symmetrie [26]. Die farbbestimmenden Charge-transfer-Banden I--III entsprechen einer $t_{1u}(\pi + \delta) \rightarrow t_{2g}(d + \pi)$ -, IV und V einer $t_{2u}(\pi) \rightarrow t_{2g}(d + \pi)$ -Anregung [27]. Die kürzerwelligen Absorptionen dürften Übergängen nach e_g und Anregungen der Carbonylgruppierung zuzuordnen sein.

Obwohl in den untersuchten Komplexen formal dreiwertiges Osmium vorliegt, erscheinen die CT-Absorptionsbanden an nahezu den gleichen Positionen wie bei den Hexahalogenoosmaten(IV). Aus der Schwingungsfeinstruktur, die an den kurzwelligen Flanken der CT-Banden II und III von $(T\ddot{A}A)_2[OsCl_5(CO)]$ beobachtet wird, errechnet sich für die angeregte Schwingung ν_3^* ein Wert von 267 cm⁻¹, der geringfügig höher als im $(T\ddot{A}A)_2[OsCl_6]$ liegt.

Fig. 1. UVS-Spektren von $(T\overline{A}A)_2[O_SX_5(CO)]$ (X = Cl -----, X = Br -----, X = J -----) in KBr-Presslingen bei 10 K.

1 gr	
TABELI	

2

.

IR- UND RAMAN-SCHWINGUNGEN (cm⁻¹) FÜR M₂[OsX₅(CO)]

×	M⁺		n(CO)	δ(Os(CO))	n(0sC)	µ(0₅X)			ℓ(Xፄ0)⁄⁄	μĽ
			V1	ы	V1	A1	B1 1.8	R S	A1	• • • • •
			14	61	72	63	9/1	014	t-1	
cl'	K ⁺	11	2040/2034vs	566m	518w	337m	283w	3245	283w	7.B.w
	Rb⁺	IR	2022/2015vs	566s	515m	330(sh)	280m	320vs	280m	68(br)
	Cs ⁺	IR	1972vs	679m	530w	335(sh)	272m	313vs	272m	63(br)
		Ita	1970(6)		529(2)	338(10)	284vw		284vw	68(1/2)
•	TMA ⁺	111	1064vu	677m	527vw	nicht gemess	en			
	TÄA ⁺	Ш	1951 vg	586m	644vw	328(sh)	271m	308vs	271m	65w
	Ph4P ⁺	IR	1950vs	586n		331(sh)	270w	308vs	270w	49vw
Br	K ⁺	IR	201 5vs	657s	613w	212(sh)	186w	220vs	186w	76(br)
	\mathbf{Rb}^{\dagger}	IR	2006vs	569m	617w	209(sh)	181w	2248	181w	63(br)
	t S	IR	1967vs	571s	532w	209(sh)	181m	224vs	181 m	69(br)
	-	Ra	1970(4)		531(b)	211(10)	178(1)		178(1)	58(3)
	TMA ⁺	IR	1959vs	671m	637w	nicht gemess	en			•
-	TÄA ⁺	IR	1956vs	572m	637vw	21 წ(sh)	186w	222vs	186w	67(br)
	K ⁺	II	1988vs	547m	622w	nicht gemess	cu		•	
	Rb ⁺	IR	1978vs	548m ·	516w	167w	138vw	1748	138vw	63m
	+ °°	IR	1046vs	556m	526w	156w	137w	176s	137w	
		Ra	1948(2)		632(1/2)	157(10)	139(5)	178(1/2)	139(6)	•

Į

Fig. 2. IR- (oben) und Raman-Spektrum (unten) von Cs2[OsCl5(CO)].

IR- und Raman-Spektren

Die Aufnahme der IR-Spektren erfolgte mit Beckman-Geräten im Bereich 400-4000 cm⁻¹ (IR 9) an KBr-Presslingen und für 33-800 cm⁻¹ (IR 11) an Nujolverreibungen auf Polyäthylenscheiben bei Raumtemperatur. Die Raman-Spektren wurden an KBr-Presslingen bei der Temperatur des fl. Stickstoffs nach einem in [28] beschriebenen Verfahren mit einem Cary 82 mit Argonlaser (514.5 nm) registriert, Tab. 1 und Fig. 2-4.

Für die Komplexe $[MX_5(CO)]^{2-}$ mit der Punktgruppe C_{4v} sind 13 Normalschwingungen $(5A_1 + 2B_1 + B_2 + 5E)$ zu erwarten, von denen jedoch vor allem

Fig. 3. IR- (oben) und Raman-Spektrum (unten) von Cs2[OsBr5(CO)].

Fig. 4. IR- (oben) und Raman-Spektrum (unten) von Cs2[OsJ5(CO)].

einige schwache Deformationsschwingungen nicht beobachtbar sind. Unterhalb von 100 cm⁻¹ treten zusätzlich Gitterschwingungen auf. Für die Zuordnung werden ausser den Frequenzen und Intensitäten der IR- und Ramanbanden auch Vergleiche mit ähnlichen Verbindungen herangezogen.

Die CO-Valenzschwingung ergibt im IR-Spektrum die intensivste Bande. Im Ramanspektrum hat sie die gleiche Lage, ist aber deutlich schärfer ausgebildet. $\delta(OsCO)$ (E) tritt stets bei höheren Wellenzahlen, im IR intensiver und im Raman schwächer als $\nu(OsC)$ (A_1) auf. Die Aufspaltungen der von der planaren OsX₄-Ebene herrührenden $\nu(OsX)$ -Schwingungen sind kleiner als bei anderen Halogenocarbonylosmaten [2,3,24]. Wie erwartet, sind in den Raman- die A_1 -, in den IR-Spektren die B- und E-Schwingungen am stärksten. Die von der unsymmetrischen Achse CO-Os-X' herrührende Valenzschwingung ν_4 ist infolge der starken trans-Lockerung der Os-X'-Bindung durch die CO-Gruppe bei kleineren Wellenzahlen zu erwarten. Raman-Messungen an wässrigen Lösungen der Komplexe [OsX₄(CO)(H₂O)]⁻ und der Vergleich mit trans-[OsX₄(CO)₂]⁻ deuten jedoch auf eine Überlagerung mit der B_1 -Schwingung (ν_6) der OsX₄-Ebene hin. Die getroffenen Zuordnungen stimmen weitgehend mit [19,30] überein.

Wie aus Tab. 1 hervorgeht, hängt die Lage einiger Banden stark von der Grösse des Kations ab. Das kleine K⁺ mit seinem gegenüber Cs⁺ höheren Ionenpotential zieht die Elektronen seiner Nachbarn stärker an und bewirkt dadurch in den Komplexen eine verstärkte $M(d_{\pi}) \rightarrow X(d_{\pi})$ - π -Rückbindung, die durch die kurzwellige Verschiebung der $\nu(MX)$ -Bande angezeigt wird [29]. Parallel zu dem Elektronenabzug vom Zentralion wird die Os-C-Bindung geschwächt und die Bindung im CO verstärkt. Dementsprechend fallen $\nu(Os-C)$ und $\delta(Os-CO)$, während $\nu(CO)$ deutlich ansteigt.

Durch Messung bei tiefer Temperatur (10 K) werden die IR-Spektren nur unwesentlich verbessert. Beim $Cs_2[OsBr_5(CO)]$ wird ein schwacher Resonanz-Raman Effekt beobachtet.

ANALYSENERGEI	ALYSENERGEBNISSE Gef. (ber.) (%)				
	Halogen	Osmium			
Cs ₂ [OsCl ₅ (CO)]	26.7 (25.81)	28.0 (28.76)			
$Cs_2[OsBr_5(CO)]$	45.3 (45.22)	20.8 (21.53)			
$Cs_2[OsJ_5(CO)]$	56.0 (56.73)	16.5 (17.00)			

TABELLE 2

Experimentelles

Hinweise zur Darstellung der Ausgangsprodukte und zu den Analysenmethoden finden sich in [1].

$M_2[OsBr_5(CO)]$

In die Lösung von 1 g Na₂[OsBr₆] in 100 ml Aceton wird bei 40°C und Normaldruck 15–20 Studen CO eingeleitet, wobei sich die Lösung violettrot färbt und NaBr ausfällt. Nach Zusatz von 10 ml 47%iger HBr und 3-stündigem Stehen bei Raumtemperatur wird die dann wieder braunrote Lösung gefriergetrocknet. Nach Aufnehmen des Rückstandes mit konz. HBr kocht man auf, zentrifugiert und fällt aus der heissen Lösung mit den entsprechenden Bromiden die dunkelbraunen Salze M₂[OsBr₅(CO)], M = K⁺, Rb⁺ und Cs⁺ aus. Bei Verwendung von Alkohol als Lösungsmittel lassen sich Salze mit M = TMA⁺ (Tetramethylammonium), TÄA⁺ und Ph₄P⁺ (Tetraphenylphosphonium) darstellen. Die Ausbeuten liegen je nach verwendetem Kation bei 75–85%.

$M_2[OsCl_5(CO)]$

500 mg K₂[OsBr₅(CO)] werden mit 100 ml 37% iger HCl 3 Tage unter Rückfluss gekocht, wobei eine Farbänderung von braunrot nach orangegelb auftritt. Nach dem Eindampfen der Lösung werden unter Verwendung der entsprechenden Chloride die orangegelben Alkalisalze aus heisser konz. HCl, die Salze mit organischen Kationen aus alkoholischer Lösung ausgefällt. Die Ausbeuten liegen bei 80% bezogen auf K₂[OsBr₆].

$M_2[OsJ_5(CO)]$

500 mg K₂[OsBr₅(CO)] werden mit 100 ml konz. HJ aufgenommen und 2 Tage bei 40°C belassen. Aus der weitgehend eingeengten braungrünen Lösung lassen sich die Alkalisalze als dunkelgrüne, feinkristalline Niederschläge ausfällen. Die Ausbeuten liegen für das Rb- bzw. Cs-Salz bei 70%.

Wie bei den Hexahalogenokomplexen nimmt die Löslichkeit von den Chloroüber die Bromo- zu den Jodoverbindungen zu und die Stabilität in Lösung ab. Die Analysenergebnisse für die Cäsiumsalze sind in Tab. 2 aufgeführt.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für die Unterstützung unserer Arbeit.

Literatur

- 1 W. Preetz und F.H. Johannsen, J. Organometal. Chem., 86 (1975) 397.
- 2 F.H. Johannsen, W. Preetz und A. Scheffler, J. Organometal. Chem., 102 (1975) 527.
- 3 F.H. Johannsen und W. Preetz, J. Organometal. Chem., 104 (1976) 79.
- 4 M.J. Cleare und W.P. Griffith, J. Chem. Soc. A. (1969) 372.
- 5 M.J. Cleare und W.P. Griffith, J. Chem. Soc. A, (1970) 2788.
- 6 R. Colton und R.H. Farthing, Aust. J. Chem., 24 (1971) 903.
- 7 M.L. Berch und A. Davidson, J. Inorg. Nucl. Chem., 35 (1973) 3663.
- 8 B.C. Hui und B.R. James, Can. J. Chem., 48 (1970) 3713.
- 9 J. Halpern, B.R. James und A.L.W. Kemp, J. Amer. Chem. Soc., 88 (1966) 5142.
- 10 D. Forster, Inorg. Chem., 8 (1969) 2556.
- 11 R. Colton, R.H. Farthing und J.E. Knapp, Aust. J. Chem., 23 (1970) 1351.
- 12 D. Forster, Inorg. Chem., 11 (1972) 1686.
- 13 J.V. Kingston und G.R. Scollary, J. Inorg, Nucl. Chem., 34 (1972) 227.
- 14 Yu.S. Varshavsky, T.G. Cherkasova und N.A. Buzina, J. Organometal. Chem., 77 (1974) 117.
- 15 J.J. Daly, F. Sanz und D. Forster, J. Amer. Chem. Soc., 97 (1975) 2551.
- 16 L. Malatesta und S. Sandroni, Spec. Publication, Chem. Soc., 13 (1959) 122.
- 17 L. Maiatesta, L. Naldini und F. Cariati, J. Chem. Soc., (1964) 961.
- 18 D. Forster, Syn. Inorg. Metal. Org. Chem., 1 (1971) 221.
- 19 M.J. Cleare, H.P. Fritz und W.P. Griffith, Spectrochim. Acta A, 28 (1972) 2019.
- 20 M.W. Bee, S.F.A. Kettle und D.B. Powell, Spectrochim. Acta A, 30 (1974) 139.
- 21 I. Nakagawu und T. Shimanouchi, Spectrochim. Acta A, 21 (1965) 759.
- 22 V.V. Kravchenko, V.F. Travkin und N.M. Sinitsyn, Koord. Khim., 1 (1975) 930.
- 23 N.M. Sinitsyn, V.F. Travkin, A.A. Svetlov und Z.B. Itkina, Koord. Khim., 1 (1975) 103.
- 24 F.H. Johannsen, Dissertation, Kiel, 1976.
- 25 W. Preetz und H. Homborg, Z. Anorg. Allg. Chem., 415 (1975) 8.
- 26 C.K. Jørgensen und W. Preetz, Z. Naturforsch. A, 22 (1967) 945.
- 27 S.B. Piepho, W.H. Inskeep, P.N. Schatz, W. Preetz und H. Homborg, Mol. Phys., 30 (1975) 1569.
- 28 H. Homborg und W. Preetz, Spectrochim. Acta A, 32 (1976) 709.
- 29 J.E. Fergusson und P.F. Heveldt, Aust. J. Chem., 27 (1974) 661.
- 30 M.J. Cleare, H.P. Fritz und W.P. Griffith, Spectrochim. Acta A, 28 (1972) 2013.